UNCLASSIFIED # AD NUMBER AD811673 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Administrative/Operational use; Sep 1966. Other requests shall be referred to Commanding Officer, U.S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, MD. **AUTHORITY** USAARDC ltr, 27 Dec 1977. AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPONTS USE AND DISCLOSURE. DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. BRI R 1:44 # BRL AD (C. 1 9 00 REPORT NO. 1344 AIR BLAST PARAMETERS VERSUS DISTANCE FOR HEMISPHERICAL THE SURFACE BURSTS by C. N. Kingery APR 1 7 1967 September 1966 This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Commanding Officer, U.S. Army Ballistic Research Laboratories. Aberdeen Proving Ground, Maryland U. S. ARMY MATERIEL COMMAND BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND Destroy this report when it is no longer needed. Do not return it to the originator. The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents. The use of trade names or manufacturars' names in this report does not constitute indorsement of any commercial product. #### BALLISTIC RESEARCH LABORATORIES REPORT NO. 1344 SEPTEMBER 1966 This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of Commanding Officer, U.S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland AIR BLAST PARAMETERS VERSUS DISTANCE FOR HEMISPHERICAL THT SURFACE BURSTS C. N. Kingery Terminal Ballistics Laboratory Program was supported in part by the Defense Atomic Support Agency; Subtask No. 01.049. ABERDEEN PROVING GROUND, MARYLAND #### PREVIOUS PAGE WAS BLANK, THEREFOR WAS NOT FILMED. #### BALLISTIC RESEARCH LABORATORIES REPORT NO. 1344 CNKingery/sjw Aberdeen Proving Ground, Md. September 1966 ## AIR BLAST PARAMETERS VERSUS DISTANCE FOR HEMISPHERICAL THT SURFACE BURSTS #### ABSTRACT This report contains a presentation of the air blast parameters, peak overpressure, arrival time, positive duration and impulse versus scaled distances. The values of the parameters are derived from empirical measurements made on a series of tests sponsored under The Technical Cooperation Program (TTCP) i.e., Canada, the United Kingdom and the United States. The measurements were made on 5-, 20-, 100- and 500-ton TNT surface bursts. The charges consisted of small TNT blocks stacked in the shape of a hemisphere. #### PREVIOUS PAGE WAS BLANK, THEFEFOR WAS NOT FILMED. #### TABLE OF CONTENTS | Pag | ţf: | |--|-----| | ABSTRACT | 3 | | SYMBOLS AND ABBREVIATIONS | ŗ | | INTRODUCTION |) | | BACKGROUND |) | | PROCEDURE |) | | Arrival Time |) | | Velocity | 3 | | Peak Overpressure | } | | Positive Duration | ļ | | Positive Impulse | ł | | PRESENTATION OF DATA | ł | | Method of Analysis | j | | TABULATIONS AND CURVES | , | | Positive Duration Curves | , | | Positive Impulse Curves | 2 | | Arrival Time Curves | ; | | Peak Overpressure Curve |) | | SUMMARY AND CONCLUSIONS |) | | REFERENCES |) | | APPENDIX A · · · · · · · · · · · · · · · · · · | | | DIGMPTDIMION ITOM | , | #### PREV OUS PAGE WAS BLANK, THEREFOR WAS NOT FILMED. #### SYMBOLS AND ABBREVIATIONS - D Distance from ground zero (GZ) - W Yield of weight of explosive charge in pounds - λ Scaled distance from ground zero (scaled to one pound at sea level) or $D/W^{1/3}$ - t Arrival time of the blast wave at D - t Scaled time of arrival - ΔP Positive peak overpressure - $\Delta P_{_{\mathbf{S}}}$ Scaled positive peak overpressures - t+ Positive duration - t_{+e} Scaled positive duration - I Positive impulse - I_s Scaled positive impulse - P Atmospheric pressure at sea level (14.7 psi) - P Ambient atmospheric pressure at test site - To Temperature at sea level (15 C) - T Ambient temperature at test site - C Sound velocity at sea level (1116.4 ft/sec) - U Velocity of shock front - c Ratio of specific heats - M Mach Number U/c - e Experimental - c Computed #### SYMBOLS AND ABBREVIATIONS (Contd) The curves and tabulations presented in this report are scaled to standard sea level atmospheric conditions for the yield of a one-pound TNT hemispherical charge fired on the surface. To use the curves or tabulations for predicting the blast parameters under other atmospheric conditions and charge weights the following scaling factors should be used. That is, multiply the values presented in this report by the scaling factors obtained from the following equations: $$S_{p} = (\frac{P_{a}}{P_{o}}) \qquad \text{Pressure scaling factor}$$ $$S_{d} = (W)^{1/3} (\frac{P_{o}}{P_{a}})^{1/3} \qquad \text{Distance scaling factor}$$ $$S_{t} = (W)^{1/3} (\frac{P_{o}}{P_{a}})^{1/3} (\frac{288}{T_{a} + 273})^{1/2} \qquad \text{Time scaling factor}$$ $$S_{i} = (W)^{1/3} (\frac{P_{a}}{P_{a}})^{2/3} (\frac{288}{T_{a} + 273})^{1/2} \qquad \text{Impulse scaling factor}$$ Where W in the above equations is the charge weight for which the blast parameters are being predicted. #### INTRODUCTION This report is a compilation of experimental data measured on a series of TNT detonations. The results have been carefully analyzed and presented in a useful form for the engineer or experimenter. The objective of this report is to present the experimental determinations of certain blast parameters. These parameters were measured from records obtained from the surface detonations of TNT hemispheres ranging from 5 to 500 tons. They have been reduced to a yield of one pound of TNT detonated at standard sea level conditions. The scaled values are tabulated and presented in the form of blast parameter versus distance. This report is a follow-on to an earlier report containing tabulations and a curve of peak overpressure versus distance. #### BACKGROUND The Ballistic Research Laboratories (BRL) have participated with the Suffield Experimental Station (SES), a facility of the Canadian Defense Research Board, in a series of multi-ton TNT experiments starting in 1959. In these experiments the BRL, in addition to conducting various effects and target response projects have always instrumented a blast line to measure the pressure-time history of the blast wave at selected radial distances from ground zero. BRL participated in a 5-ton test in 1959, a 20-ton test in 1960, a 100-ton test in 1961 and a 500-ton test in 1964. On the last three tests, the U.S. participation was under the sponsorship of the Defense Atomic Support Agency (DASA) and the guidance of The Technical Cooperation Program (TTCP). Under the TTCP the United Kingdom, Canada and the United States all participated in a coordinated program. The experimental test area at SES covers approximately one thousand square miles of undulating prairie. The earth medium at the test site is a glacially deposited silt with underlying clay, sand, and gravel. The general terrain is quite level and ideally suited for multi-ton surface bursts. Superscript numbers denote references which may be found on page 69. The charges were constructed in a hemispherical configuration with the flat side resting on the surface. They consisted of 12 x 12 x 4 inch blocks of cast TNT (density 1.56 gm/cc); each block weighed 32.6 lbs \pm 0.063 lbs. A photograph of the 500-ton charge is shown in Figure 1. A description of the first three tests and source references are presented in Reference 1. The 500-ton shot "Operation SNOW BALL" is described in a two-volume preliminary report, 2 and a two-volume report on symposium precedings. 3 #### PROCEDURE The data from all four tests were first processed to obtain the "as read" values of peak overpressure, arrival time, positive duration and positive impulse. The cube root scaling and altitude corrections were applied to these values to bring them to standard sea-level conditions and the equivalent of a one-pound charge. The scaled values were then used to determine the curves presented in this report. The method used to determine the "best fit" curve is described for each parameter. #### Arrival Time The arrival time of the blast wave is defined as that interval of time between the initiation of the detonator caps and the arrival of the blast wave at a specific distance. Therefore, the arrival time includes the detonation time. Arrival time may be measured by several methods. One method is the use of high speed cameras to photograph the fire ball and the shock front as it propagates radially from the surface of the charge. The almost discontinuous change in pressure, density and temperature at the shock front causes a similar change in the refractive index of air. Therefore when a black and white striped backdrop is viewed through the region immediately behind the shock front, the rays of light are deflected and a distortion or discontinuity in the backdrop pattern is apparent. The passage of the shock wave, as revealed by the propagation of the discontinuities can be photographed. Each frame of FIGURE 1 500-TON THT HEMISPHERICAL CHARGE the film records the new position of the shock front and a large number of small time intervals are recorded; thus we are provided with an accurate radius-time history of the shock front. A variation of the backdrop technique is to photograph the deflection of trails of smake rockets fired just prior to the detonation. The deflection caused by the passage of the shock can be recorded and thereby the radius of the shock front can be established from the high speed motion pictures. A second method used during the series of tests was a direct measurement using blast switches which produced signals when struck by the
shock front. The switches were placed at selected radial distances and when struck each gage provided an electrical signal which was recorded as a function of time. Overpressure gauges also measured the arrival time of the blast wave and were used to supplement other methods. This should be considered a variation of the blast switch technique rather than a new method. A third method involves the use of coaxial cable (slifer cable) which shorts out when exposed to high overpressures. To measure blast wave arrival times the cable is laid along the surface of the ground from the detonation point out to a point where the predicted overpressure is less than the pressure required to crush the cable. A Colpitts oscillator is connected to the cable; as the blast wave progresses along the cable, the cable collapses, thus changing the circuit inductance (and frequency) continuously. By proper calibration of the system the oscillator frequency as a function of inductance (cable length) will be known, thus the location of the crushing force can be determined at any point along the cable. See Reference 5 for a detailed description and results obtained on Operation SNOW BALL. #### Velocity The velocity of the shock front (U) associated with a blast wave is not recorded as a direct measurement but must be calculated from the arrival time versus distance data. $$U = \frac{d\lambda}{dt_{as}} . (1)$$ The primary reason for measuring arrival time is to gather data necessary to determine the velocity of the shock front at selected distances. Determining the shock front velocity enables one to derive the peak overpressure from the Rankine-Hugoniot relationship: ⁷ $$\frac{\Delta P_{\rm s}}{P_{\rm o}} = \left(\frac{U}{C_{\rm o}}\right) \left(\frac{u}{C_{\rm o}}\right) (1.4) \tag{2}$$ A detailed treatment of the methods and problems associated with determining peak overpressure from measurements of arrival time is presented in Reference 4. #### Peak Overpressure The determination of peak overpressures measured on the 5-, 20and 100-ton tests is discussed in Reference 1. The overpressuredistance curve from that report was modified to include close-in higher overpressure values and is presented in this report to provide a complete presentation of the available measured parameters. The peak overpressures were obtained from direct measurements provided by pressure sensitive transducers and the arrival time-velocity calculations using the Rankine-Hugoniot relationship. Better close-in arrival time data and overpressure measurements were obtained on the 500-ton test than on the previous shots; therefore, the peak overpressure versus distance curve is updated to include the results from the 500-ton test. #### Positive Duration Positive duration is defined as that interval of time between the arrival of the positive pressure pulse associated with the blast wave and the end of the positive pressure pulse, or a return to the ambient pressure conditions. The positive durations presented in this report were obtained from recordings of the pressure-time history of the blast wave using pressure sensitive transducers with time-calibrated recording systems. Positive duration is very difficult to measure with consistency and repeatability. The measured records values are very susceptible to gage hysteresis, base line drift, and fluctuations due to acceleration-sensitive gages. Where there was some discrepancy in individual measurements, the data from the pressure-time record was plotted on semi-log graph paper and extrapolated to zero overpressure. Plotting the pressure on the linear scale and the time on the log scale tends to give a straight line graph and a better interpolated value for duration. #### Positive Impulse The positive impulse of the blast wave is the integrated area under the pressure-time curve and is important in relating target damage to yield and overpressure. Since the impulse is an integrated area and expressed in psi-msec, the computed value is a function of the overpressure, the positive duration and the rate of decay behind the shock front. When a record of deflection (where deflection is a function of pressure) versus time is analyzed and programmed in the computer to obtain pressure versus time, the computer is also programmed to integrate the data and tabulate impulse. The impulse values as read from the individual records were scaled to a 1 pound TNT charge at standard sea level conditions. #### PRESENTATION OF DATA Comments are made on the results of each shot and the data are presented in the form of curves and tabulations. The report presents only scaled values of the various parameters. Initially twelve curves were drawn. These were scaled positive duration, scaled positive impulse, and scaled arrival time. Each parameter was plotted as a function of scaled distance from ground zero for each of the four detonations. This separation of the tests was carried out to allow the detection of any trends related to yield and to test the scaling methods. Certain trends were evident when direct comparisons were made between the scaled values from the different yields. These trends will be discussed as the various parameters are presented. The curves established for each yield were drawn by visual inspection of the data points. Because of the many inflections in the positive duration and positive impulse curves, no least squares fits were attempted. In the case of the arrival time curve, the data were in such excellent agreement that a least-squares fit was used only for the close-in values. #### Method of Analysis Because of the large amount of scatter in the positive duration and positive impulse data, it was necessary to perform a thorough review of all pressure records in order to eliminate faulty data. Several methods were used to distinguish between "good" and "bad" records. All records exhibiting excessive noise or oscillations were disregarded. Slow rise times, hysteresis and non-uniformity of recording running speed were the most common causes of defective records. As a final check the peak overpressure of each record was compared to the standard pressure-distance curve presented in Reference 1. In this manner it was possible to sift out "bad" records caused by faulty transducers or calibration techniques. This review eliminated approximately 20 percent of the records. The data thus retained were reasonable and consistent. Because of the limited number of points and the inflections along the positive duration and positive impulse curve, it appeared impractical to use any of the standard least-squares fitting techniques to derive an equation describing the duration or impulse as a function of distance. Therefore, these curves were drawn to best represent the data by visual inspection. After establishing a hand drawn curve there was still a requirement to know how well the curve represented the data, that is, the distance and number of points above and below the curve or a determination of the relative error. To answer these questions a system of data analysis was devised which provides a clear picture of the dependability of the curves. This method was also applied to the arrival time data even though the curve had no inflections. Following are the definitions of the important quantities which apply to all three curves: Relative Error: A relative error is assigned to each experimental point. Relative error is defined by the following equation: $$R.E. = \frac{Y - Yo}{Yo} \tag{3}$$ where Y is the ordinate of the point and Yo is the ordinate of the standard or established curve at the the same scaled distance from ground zero. Relative error is denoted by the symbol R.E. - Average Relative Error: An average relative error is assigned to the data points used to determine each curve. It is defined as the sum of the relative errors (with signs included) of all the points, divided by the number of points used to determine the particular curve. This provides a quantative indication of how close the curve comes to the "middle" of the points. Average relative error is denoted by the letters A.R.E. - Average Absolute Relative Error: Each curve is assigned an average absolute relative error for the points used in its determination. The average absolute relative error is defined as the average of the absolute values of the relative errors. This quantity indicates the amount of scatter of the points about the curve. Average absolute relative error is denoted by the letters A.A.R.E. - Average Positive Relative Error: The average positive relative error is defined as the average relative error of all points above the curve and is denoted by the letters A.P.R.E. - Average Negative Relative Error: The average negative relative error is defined as the average relative error of all points below the curve and is denoted by the letters A.N.R.E. - Number Positive Points: The number of points above the constructed curve is abbreviated as N.P.P. - Number Negative Points: The number of points below the constructed curve is abbreviated as N.N.P. #### TABULATIONS AND CURVES In this section the scaled data points for each shot are tabulated and a curve representing those points is presented for each parameter being considered. A composite curve has been developed and is presented along with a tabulation of the relative errors of the points used to determine the curve. #### Positive Duration Curves The development of the positive duration curve begins with a tabulation of scaled data points of the positive duration recorded on the 5-, 20-, 100- and 500-ton TNT detonations. The data points were taken from selected pressure-time records which met the established criterion for "good" records. Tables I through IV include the scaled positive duration versus scaled distance from ground zero for the 5-, 20-, 100- and 500-ton TNT detonations respectively. Curves representing the tabulations are presented in Figures 2 through 5. The scaled values of positive
duration for the 5-ton and 20-ton shot are presented in Tables I and II. Figures 2 and 3 are curves drawn from visual inspection of the data contained in those tables. A comparison between the two curves show a similar shape, but the curve for the 20-ton shot is consistently lower out to about 8λ . No explanation to account for this difference is offered at this time. TABLE I SCALED POSITIVE DURATION AND DISTANCE VALUES FOR A 5-TON THE DETONATION | λ | t _{+s} | λ | t.
+s | |-----------------------|-------------------------|-----------------------|-------------------------| | FT/LBS ^{1/3} | MSEC/LBS ^{1/3} | FT/LBS ^{1/3} | MSEC/LBS ^{1/3} | | 1.49 | .34 | 7.46 | 2.44 | | 1.72 | .44 | 7.46 | 2.44 | | 2.26 | 1.24 | 9.49 | 2.71 | | 2.26 | 1.26 | 20.34 | 3.73 | | 3.16 | 1.81 | 35.62 | 4.50 | | 3.16 | 2.03 | 42.49 | 4.28 | | 3.16 | 2.14 | 42.49 | 4.28 | | 4.75 | 1.62 | 42.49 | 4.36 | | 4.75 | 1.71 | 81.36 | 5.19 | | 4.75 | 1.81 | 81.36 | 5.19 | | 4.75 | 1.81 | 81.36 | 5.42 | | 4.75 | 1.99 | 81.36 | 5.42 | | 6.01 | 1.85 | 153.70 | 5.64 | | 6.01 | 1.94 | 153.70 | 6.32 | | 7.46 | 2.26 | 316.40 | 8.15 | | 7.46 | 2.35 | 316.40 | 6.32 | TABLE IT SCALED POSITIVE DURATION AND DISTANCE VALUES FOR A 20-TON THE DETONATION | λ | t _{+s} | λ | t _{+s} | |--|--|---|--| | FT/LBS ^{1/3} 1.14 1.14 1.28 1.28 2.34 2.34 3.11 3.11 3.11 3.11 4.20 4.20 4.20 4.20 4.20 4.20 5.77 5.77 5.77 5.77 8.28 8.28 8.28 | MSEC/LBS ^{1/3} .19 .20 .16 .23 1.03 1.27 1.13 1.25 1.33 1.56 1.62 1.27 1.29 1.32 1.64 1.88 1.91 1.51 1.58 1.60 1.62 1.72 1.94 2.19 2.24 2.27 2.32 | FT/LBS ^{1/3} 8.28 8.28 11.71 11.71 11.71 11.756 17.5 | MSEC/LBS 2.33 2.51 2.58 2.76 2.83 2.76 2.83 2.76 2.83 2.76 2.83 2.99 3.04 3.17 3.24 3.24 3.24 3.25 3.41 3.42 4.09 4.15 4.70 6.76 7.60 8.34 8.43 | TABLE ITI SCALED POSITIVE DURATION AND DISTANCE VALUES FOR A 100-TON THT DETONATION | | | T | | |--|--|---|--| | λ | t _{+s} | λ | t+s | | FT/LBS ^{1/3} 3.40 4.36 4.66 4.99 5.02 5.02 5.57 6.11 6.84 6.89 6.89 7.39 7.39 | MSEC/LBS ^{1/3} 1.30 1.74 2.00 1.69 1.64 1.67 2.10 1.87 2.09 1.74 1.81 2.04 2.04 | FT/LBS ^{1/3} 7.39 7.76 8.76 9.51 14.07 17.02 46.73 46.73 116.80 116.80 166.90 250.40 | MSEC/LBS ^{1/3} 2.10 1.86 2.26 2.51 3.03 3.15 4.30 4.33 5.74 5.81 5.71 5.83 6.09 | TABLE IV SCALED POSITIVE DURATION AND DISTANCE VALUES FOR A 500-TON THT DETONATION | λ | ^t +s | λ | t _{+s} | |---|--|--|---| | FT/LBS ^{1/3} .49 .79 1.71 2.97 2.97 3.46 4.14 3.46 4.53 5.55 | MSEC/LBS ^{1/3} .19 .18 .29 1.33 1.56 1.31 1.23 1.36 1.36 1.27 | FT/LBS ^{1/3} 5.55 6.13 6.72 7.80 7.80 9.35 9.35 14.10 | MSEC/LBS ^{1/3} 1.56 1.26 2.01 1.76 2.11 2.31 2.23 2.31 2.76 5.22 | The scaled values of positive duration presented in Table III for the 100-ton shot are plotted in Figure 4. This curve was drawn to best fit the data and also follows the trend established from the 5- and 20-ton shots. The overall curve is lower than the 5-ton curve except for the dip at 5λ , where the two curves coincide over a short ground range. The general shape of the 20- and 100-ton curves is similar but no definite trend can be established, other than to say that the 100-ton values are slightly lower at distances greater than 7λ . The scaled values of positive duration listed in Table IV for the 500-ton shot have been plotted in Figure 5. The curve drawn through the points follow the trend already established from the lower yield shots. With the exception of one point, the 100-ton curve is higher at λ 's less than 8. At distances greater than 8 λ the 100-ton and 500-ton curves coincide. The 500-ton and 20-ton curve show good agreement in general shape but the 20-ton curve is slightly higher at distances greater than 4λ ; whereas, the 5-ton curve is higher than the 500-ton curve over the full range of scaled distances presented. In Figure 6 a composite curve has been drawn to best represent all data points. As noted above the scaled positive duration appears to be yield dependent and it is suggested that for yields of 10 tons or less that the scaled 5-ton curve be used. For yields greater than 10 tons the composite curve will probably best represent predicted durations. All data points listed in Tables I through IV are presented in Table V as well as the values of positive duration obtained at similar λ 's from the composite curve. The difference between the experimental values of positive duration and those obtained from the composite curve are also tabulated. From this difference, a relative error, is calculated which gives an indication of how well each point fits the curve and its location above or below the curve (i.e., positive or negative). The analysis of the data and the constructed curve produced the values listed below. Number of Positive Points 66 Number of Negative Points 68 Total Number of Points 134 TABLE V RELATIVE ERROR DETERMINATIONS FOR POSITIVE DURATION | λ | $\Delta_{,+s}^{e}$ | $\Delta^{c}t_{+s}$ | DIFF. | R. E. | |----------------|--------------------|--------------------|----------------|-------------------| | .487 | .190c | .1911 | 001 | 005652 | | .789 | .1760 | .17CO | .006 | .035294 | | 1.142 | -1998 |
.1976 | .002 | .011338 | | 1.142 | .1851 | .1976 | 012 | 063069 | | 1.285 | .2262 | .2267 | •000 | 002206 | | 1.285 | -1586 | -2267 | 068 | 300397 | | 1.492 | .3386 | .2854 | -053 | .186239 | | 1.710 | .2860 | .3805 | 094 | 248357 | | 1.718 | .4424 | .3849 | .058 | .149389 | | 2.260 | 1.2640 | .9595 | - 305 | .317353 | | 2.260 | 1.2410 | .9595 | •282 | .293382 | | 2.342 | 1.0340 | 1.0886 | 055 | 050200 | | 2.342 | 1.2660 | 1.0886 | -177 | .162908 | | 2.970 | 1.5600 | 1.6495 | 089 | 054259 | | 2.970 | 1.3300 | 1.6495 | 319 | 193695 | | 3.113 | 1.6200 | 1.6781 | 058 | 034611 | | 3.113 | 1.2510 | 1.6781 | 427 | 254505 | | 3.113 | 1.1280 | 1.6781 | 550 | 327803 | | 3.113 | 1.3310 | 1.6781 | 347 | 206832 | | 3.113 | 1.5630 | 1.6781 | 115 | 068578 | | 3.164
3.164 | 1.8060 | 1.6862 | •120 | .0/1022 | | 3.164 | 2.0310 | 1.6862 | .345 | .204455 | | 3.405 | 2.1400
1.3050 | 1.6862 | .454 | .209096 | | 3.460 | 1.3100 | 1.7000 | 395 | 232353 | | 3.460 | 1.3600 | 1.7000 | 390 | 229412 | | 4.140 | 1.2300 | 1.7000 | 340 | 200000 | | 4.198 | 1.9100 | 1.6016
1.5981 | 372 | 232018 | | 4.198 | 1.8800 | 1.5981 | .312 | .195154 | | 4.198 | 1.2720 | 1.5981 | •282
- •326 | -176382 | | 4.198 | 1.2480 | 1.5981 | 350 | 204065 | | 4.198 | 1.6390 | 1.5981 | .341 | 219082 | | 4.198 | 1.2950 | 1.5981 | 303 | .025580
189673 | | 4.198 | 1.3160 | 1.5981 | 282 | 176532 | | 4.356 | 1.7400 | 1.5886 | •151 | .095276 | | 4.530 | 1.3600 | 1.5794 | 219 | 138914 | | 4.657 | 2.0010 | 1.5769 | .424 | -268978 | | 4.746 | 1.8100 | 1.5751 | • 235 | .149148 | | 4.746 | 1.7150 | 1,5751 | .140 | .088834 | | 4.746 | 1.9900 | 1.5751 | .415 | .263428 | | 4.746 | 1.6250 | 1.5751 | .050 | .031694 | | 4.746 | 1.8060 | 1.5751 | .231 | -146608 | TABLE V (Contd) # RELATIVE ERROR DETERMINATIONS FOR FOSITIVE DURATION | λ | $\Delta^e t_{+s}$ | $\Delta^{\mathbf{c}}$ t, | DIFF. | R. E. | |----------------|-------------------|--------------------------|---------------|------------------| | 4.990 | 1.6880 | 1.5702 | -118 | .075022 | | 5.024 | 1.6700 | 1.5719 | .098 | .062395 | | 5.024 | 1.6360 | 1.5719 | .064 | .040765 | | 5.550 | 1.5600 | 1.6190 | 059 | 036442 | | 5.550 | 1.2700 | 1.6190 | 349 | 215565 | | 5.574 | 2.1050 | 1.6233 | .482 | .296725 | | 5.769 | 1.6160 | 1.6584 | 042 | 025579 | | 5.769 | 1.7210 | 1.6584 | .063 | .037735 | | 5.769 | 1.5980 | 1.6584 | 060 | 036432 | | 5.769 | 1.9420 | 1.6584 | -284 | .170994 | | 5.769 | 1.5100 | 1.6584 | 148 | 089495 | | 5.769 | 1.5770 | 1.6584 | 081 | 049095 | | 6.012 | 1.9410 | 1.7031 | .238 | .139673 | | 6.012 | 1.8510 | 1.7031 | -148 | .086829 | | 6.109 | 1.8700 | 1.7283 | -142 | .081963 | | 6.130 | 1.2600 | 1.7338 | 474 | 273273 | | 6.720 | 2.0100 | 1.9092 | .101 | .052797 | | 6.843 | 2.0880 | 1.9535 | .135 | .068862 | | 6.893 | 1.7400 | 1.9715 | 231 | 117414 | | 6.893 | 2.0360 | 1.9715 | •065 | .032727 | | 6.893 | 1.8100 | 1.9715 | 161 | 081908 | | 7.394 | 2.0360 | 2.1282 | - •092 | 043323 | | 7.394 | 2.0880 | 2.1282 | 040 | 018889 | | 7.394 | 2.1050 | 2.1282 | 023 | 010901 | | 7.459 | 2.2600 | 2.1477 | -112 | .052288 | | 7.459
7.459 | 2.4380 | 2.1477 | •290 | .135168 | | 7.459 | 2.3470 | 2.1477 | .199 | .092797 | | 7.761 | 2.4380 | 2.1477 | .290 | .135168 | | 7.800 | 1.8630
1.7600 | 2.2279 | 365 | 163772 | | 7.800 | 2.3100 | 2.2380 | 478 | 213584 | | 7.800 | 2.1100 | 2.2380 | .072 | .032172 | | 8.282 | 2.5120 | 2.2380 | 128 | 057194 | | 8.282 | 2.3350 | 2.3464
2.3464 | -166 | .070576 | | 8.282 | 2.1890 | 2.3464 | 011
157 | 004859 | | 8.282 | 2.5850 | 2.3464 | • • • • | 067081 | | 8.282 | 2.3210 | 2.3464 | •239
• 035 | .101688 | | 8.282 | 2.2740 | 2.3464 | 025
072 | 010825 | | 8.282 | 2.2440 | 2.3464 | 102 | 030856 | | 8.762 | 2.2620 | 2.4372 | 102 | 043641 | | 9.350 | 2.2300 | 2.5360 | 306 | 071871
120662 | | 9.350 | 2.3100 | 2.5360 | 226 | 089117 | TABLE V (Contd) RELATIVE ERROR DETERMINATIONS FOR POSITIVE DURATION | λ | Δ ^e t _{+s} | Δ ^c t _{+s} | DIFF. | R. E. | |--------|--------------------------------|--------------------------------|------------|------------------| | 9.493 | 2.7080 | 2.5589 | .149 | .058275 | | 9.513 | 2.5110 | 2.5616 | 051 | 019738 | | 11.710 | 3.0290 | 2.8010 | .228 | .081400 | | 11.710 | 3.0370 | 2.8010 | . 236 | .084256 | | 11.710 | 2.7610 | 2.8010 | 040 | 014281 | | 11.710 | 2.8320 | 2.8010 | .031 | .011067 | | 11.716 | 2.9900 | 2.8010 | .189 | .067476 | | 14.070 | 3.0260 | 3.0156 | .010 | .003449 | | 14.100 | 2.7600 | 3.0180 | 258 | 085487 | | 17.020 | 3.1490 | 3.2316 | 083 | 025560 | | 17.560 | 3.2600 | 3.2748 | 015 | 004519 | | 17.560 | 3.4080 | 3.2748 | .133 | .040674 | | 17.560 | 3.2370 | 3.2748 | 038 | 011543 | | 17.560 | 3.2810 | 3.2748 | .006 | .001893 | | 17.560 | 3.3460 | 3.2748 | .071 | .021742 | | 17.560 | 3.1750 | 3.2748 | 100 | 0304/5 | | 17.560 | 3.4220 | 3.2748 | .147 | .044949 | | 20.340 | 3.9270 | 3.4370 | 490 | .142566 | | 35.13C | 4.0890 | 4.0852 | .004 | .000930 | | 35.130 | 4.1630 | 4.0852 | .078 | .019044 | | 35.130 | 4.7000 | 4.0852 | .615 | 150494 | | 35.620 | 4.5010 | 4.1048 | .396 | | | 42.490 | 4.3560 | 4.3197 | | .096521 | | 42.490 | 4.2790 | 4.3197 | •036 | - 008408 | | 42.490 | 4.2840 | 4.3197 | 041
036 | 009417
008260 | TABLE V (Contd) ## RELATIVE ERROR DETERMINATIONS FOR POSITIVE DURATION | λ | Δ ^e t+s | Δ ^c t _{+s} | DIFF. | R. E. | |---------|--------------------|--------------------------------|-------|---------| | 46.730 | 4.3320 | 4.4519 | 120 | 026932 | | 46.730 | 4.2980 | 4.4519 | 154 | 034570 | | 58.550 | 4.5530 | 4.7452 | 192 | 040504 | | 58.550 | 4.2040 | 4.7452 | 541 | 114052 | | 81.360 | 5.4170 | 5.2004 | .217 | .041651 | | 81.360 | 5.1910 | 5.2004 | 009 | 001808 | | 81.360 | 5.4170 | 5.2004 | .217 | .041651 | | 81.360 | 5.1910 | 5.2004 | 009 | 001808 | | 99.000 | 5.2200 | 5.4380 | 218 | 040088 | | 116.800 | 5.8110 | 5.7020 | .109 | .019116 | | 116.800 | 5.7420 | 5.7020 | .040 | .007015 | | 153.700 | 5.6430 | 6.0870 | 444 | 072942 | | 153.700 | 6.3190 | 6.0870 | .232 | .038114 | | 166.900 | 5.7070 | 6.2190 | 512 | 082328 | | 166.900 | 5.8290 | 6.2190 | 390 | 062711 | | 199.900 | 6.0220 | 6.4793 | 457 | 070579 | | 199.900 | 6.7560 | 6.4793 | .277 | .042705 | | 250.400 | 6.0900 | 6.7924 | 702 | 103410 | | 316.400 | 8.1500 | 7.1686 | .981 | .136909 | | 316.400 | 6.3190 | 7.1686 | 850 | 118512 | | 428.400 | 7.6050 | 7.6437 | 039 | 005066 | | 428.400 | 8.3430 | 7.6437 | .699 | .091484 | | 428.400 | 8.4340 | 7.6437 | .790 | .103389 | | 428.400 | 8.0550 | 7.6437 | .411 | .053806 | | 428.400 | 8.3430 | 7.6437 | .699 | .091484 | $\Delta^{e}_{t_{\perp n}}$ = DURATION OF EXPERIMENTAL POINT. Δ^{c}_{t} = DURATION AS OBTAINED FROM THE STANDARD CURVE AT THE CORRESPONDING LAMDA. DIFF. = $\Delta^{e}t_{+s} - \Delta^{c}t_{+s}$ R. E. = DIFF. $\Delta^{c}t$ Average Positive Relative Error 0.097 Average Relative Relative Error 0.095 Average Relative Error 0.0006 Average Absolute Relative Error 0.096 The computations indicate that two-thirds of all points fall within plus or minus 9.6 percent of the composite curve. It should be noted that the fit of the data to the individual curves presented in Figures 2 through 4 shows a much smaller scatter than indicated for the composite curve. #### Positive Impulse Curves The development of the positive impulse curves followed the same procedure as described for the positive duration. There were fewer points available for determining positive impulse than there were for duration because in some instances the duration of a pressure-time recording was valid but the peak overpressure was not valid. Therefore, the record could not be used to determine positive impulse. In other instances the rate of decay of pressure behind the shock front was not classical, and here again the record was discarded because the impulse was not considered representative of an undisturbed blast wave. In Table VI the scaled distances and scaled positive impulses have been listed for the 5-ton TNT shot. These scaled values have been plotted in Figure 7. The curve drawn through the points shows an excellent fit with very little scatter in the scaled values of positive impulse. The shape of the curve over this range of scaled distances lends itself to a least-squares fitting technique. However, this was not done because of the small number of points in the case of the 5-ton analysis. The scaled positive impulse and distance values listed in Table VII for the 20-ton shot have been plotted in Figure 8. Here again as in Figure 7 there is very little scatter of the points about the curve. Out to a distance of 20λ the positive impulse curve for the 20-ton shot agrees well with the 5-ton shot. At distances greater than this, the two curves separate and the 20-ton curve is lower than the 5-ton curve. TABLE VI SCALED POSITIVE IMPULSE AND DISTANCE VALUES FOR A 5-TON THY DETONATION | λ | I
s | λ | I _s | |--|--|---|---| | FT/LBS ^{1/3} 4.75 4.75 7.46 7.46 9.49 20.34 35.62 | PSI-MSEC/LBS ^{1/3} 14.47 16.17 10.21 11.58 9.23 4.95 2.55 | FT/LBS ^{1/3} 42.49 42.49 42.49 81.36 81.36 81.36 | PSI-MSEC/LBS ^{1/3} 2.16 2.17 2.20 1.07 1.12 1.18 .34 | TABLE VII SCALED POSITIVE IMPULSE AND DISTANCE VALUES FOR A 20-TON THT DETONATION | λ | Is | λ | Is | |--|--|--|---| | FT/LBS ^{1/3} 2.34 3.11 3.11
4.20 4.20 5.77 5.77 5.77 8.28 8.28 8.28 8.28 8.28 8.28 8.28 | PSI-MSEC ^{1/3} 29.24 20.06 20.68 21.24 18.49 21.83 12.13 12.19 13.26 13.81 9.05 9.05 9.13 9.15 9.63 10.36 10.92 6.61 6.86 | FT/LBS ^{1/3} 11.71 11.71 11.71 17.56 17.56 17.56 17.56 17.56 17.56 17.56 17.56 17.56 17.57 17.57 17.57 17.57 17.57 17.57 199.90 199.90 428.40 | PSI-MSEC/LBS ^{1/3} 6.89 7.14 7.41 4.04 4.85 4.87 4.87 4.90 4.94 5.09 5.63 2.40 2.44 2.49 1.30 1.35 .42 .43 .18 | Table VIII contains a listing of the scaled distance and impulse values for the 100-ton shot. These values have been plotted in Figure 9 and a curve drawn to best represent the scaled data. In comparing this curve with the 20-ton curve it can be seen that they tend to coincide at distance greater than 8λ and there is a maximum separation of less than three per cent at 4λ . The scaled values of distance and positive impulse for the 500-ton shot are listed in Table IX and the same values have been plotted in Figure 10. This report presents for the first time, impulse values at scaled distances of less than 2\lambda. Records were obtained on the other shots at distances less than 2\(\lambda\), but they were always considered of very poor quality and unreliable for impulse calculations. When the curve for positive impulse presented in Figure 10 is compared with the 100-ton curve in Figure 9 there is excellent agreement with only a slight separation over the mid-range. Comparison of the 500-ton curve with the 20-ton curve shows a similar trend and here again the agreement is excellent. The comparison between the 500-ton curve and the 5-ton curve presented in Figure 7 shows the same trend as evidenced in the positive duration comparisons. That is, the 5-ton curve is higher than the 500ton curve. This would be expected since the impulse is a function of positive duration and if the duration is longer then the positive impulse would be expected to be greater, providing the overpressures and decay rate are similar. In Figure 11 all of the data have been plotted and a curve drawn through them. The listing of these values along with values read from the curve at similar λ 's is presented in Table X. This table also presents the difference between the experimental values and the "best-fit" curve. From these differences the relative errors were calculated along with other pertinent information relative to how well the curve represents the data. TABLE VIII SCALED POSITIVE IMPULSE AND DISTANCE VALUES FOR A 10C-TON THY DETCHATION | λ | Is | λ | Is | |---|---|---|--| | FT/LBS ^{1/3} 4.36 4.99 5.02 5.57 5.57 5.84 6.11 6.84 6.89 7.39 | PSI-MSEC/LBS ^{1/3} 18.97 14.72 13.32 12.01 15.30 12.25 12.31 11.93 12.53 10.27 10.47 | FT/L3S ^{1/3} 7.76 8.76 9.51 14.07 17.02 46.73 46.73 116.80 166.90 250.40 | PDI-MSEC/LBS ^{1/3} 9.58 8.70 8.82 5.84 4.96 1.83 1.73 .71 .46 .51 | TABLE IX SCALED POSITIVE IMPULSE AND DISTANCE VALUES FOR A 500-TON THT DETONATION | λ | Is | λ | I _s | |---|---|---|--| | FT/LBS ^{1/3} .49 .79 1.71 2.97 2.97 3.46 3.46 4.14 4.53 5.55 | PSI-MSEC/LBS ^{1/3} 44.60 24.00 19.30 27.20 28.40 21.30 23.90 14.30 15.20 11.30 | FT/LBS ^{1/3} 6.13 6.72 7.80 7.80 7.80 9.35 9.35 14.10 37.90 99.00 250.40 | PSI-MSEC/LBS ^{1/3} 10.30 11.20 9.01 10.00 10.50 8.14 8.85 5.42 2.30 .95 | $\begin{array}{c} \text{TABLE } \ X \\ \\ \text{RELATIVE ERROR DETERMINATION FOR POSITIVE IMPULSE} \end{array}$ | λ | e
I _s | La | DIFF. | R. E. | |----------------|---------------------|--------------------|---------------|--------------------| | .487
.789 | 44.6000
24.0000 | 44.8000
23.6300 | 200 | 004464 | | 1.710 | 19.3000 | 19.2800 | •370
•020 | .015658
.001037 | | 2.342 | 29.2400 | 25.8040 | 3.436 | .133158 | | 2.970 | 27.2000 | 24.0800 | 3.120 | .129568 | | 2.970 | 28.4000 | 24.0800 | 4.320 | .179402 | | 3.113 | 20.6800 | 23.2220 | -2.542 | 109465 | | 3.113 | 20.0600 | 23.2220 | -3.162 | 136164 | | 3.113 | 21.2400 | 23.2220 | -1.982 | 085350 | | 3.46C | 23.9000 | 21.3080 | 2.592 | ·121644 | | 3.460 | 21.3000 | 21.3080 | 008 | 000375 | | 4.140 | 14.3000 | 17.9680 | -3.668 | 204141 | | 4.198 | 21.8300 | 17.7476 | 4.082 | -230025 | | 4.198 | 18.4900 | 17.7476 | .742 | .041831 | | 4.356 | 18.9700 | 17.1472 | 1.823 | .106303 | | 4.530 | 15.2000 | 16.5100 | -1.310 | 079346 | | 4.746
4.746 | 14.4700 | 15.8620 | -1.392 | 087757 | | 4.990 | 16.1700
14.7200 | 15.8620 | -308 | .019417 | | 5.024 | 13.3200 | 15.1300 | 410 | 027098 | | 5.550 | 13.4000 | 15.0376
13.7000 | -1.718 | 114220 | | 5.55C | 11.3000 | 13.7000 | 300
-2.400 | 021898 | | 5.574 | 15.3000 | 13.6520 | 1.648 | 175182
-120715 | | 5.574 | 12.0100 | 13.6520 | -1.642 | 120715 | | 5.769 | 13.2600 | 13.2620 | 002 | 000151 | | 5.769 | 12.1900 | 13.2620 | -1.072 | 080832 | | 5.769 | 12.1300 | 13.2620 | -1.132 | 085357 | | 5.769 | 13.8100 | 13.2620 | .548 | .041321 | | 5.841 | 12.2500 | 13.1180 | 868 | 066169 | | 6.109 | 12.3100 | 12.6038 | 294 | 023310 | | 6.130 | 10.3000 | 12.5660 | -2.266 | 180328 | | 6.72C | 11.2000 | 11.5480 | 348 | 030135 | | 6.843 | 11.9300 | 11.3512 | .579 | .050990 | | 6.893 | 12.5300 | 11.2712 | 1.259 | .111683 | | 7.394 | 10.4700 | 10.5484 | 078 | 007432 | | 7.394 | 16.2700 | 10.5484 | 278 | 026393 | | 7.459
7.459 | 10.2100 | 10.4574 | 247 | 023658 | | 7.761 | 11.5800
9.5810 | 10.4574 | 1.123 | .107350 | | 7.800 | | 10.1129 | 532 | 052596 | | 7.800 | 9.0100
10.5000 | 10.0700
10.0700 | -1.060 | 105263 | | 7.80C | 10.0000 | 10.0700 | .430
070 | .042701 | | 8.282 | 10.3600 | 9.5680 | 070
-792 | 006951 | | 8.282 | 9.1320 | 9.5680 | 436 | .082776
045569 | | 8.282 | 9.0520 | 9.5680 | 516 | 053930 | | 8.282 | 10.9200 | 9.5680 | 1.352 | -141304 | | 8.282 | 9.6290 | 9.5680 | .061 | .006375 | TABLE X (Contd) RELATIVE ERROR DETERMINATION FOR POSITIVE IMPULSE | λ | e _I s | c _{Is} | DIFF. | R. E. | |-----------------------------|----------------------------|----------------------------|--------------------|------------------------------| | 8.282
8.282 | 9.148C
9.0463 | 9.5680
9.5680
9.1142 | 420
522
416 | 043896
054557
045665 | | 8.762
9.350 | 8.6980
8.1400 | 8.5850 | 445 | 051835
-03.868 | | 9.350 | 8.8500
9.2300 | 8.5850
8.4563 | .774 | .091494 | | 9.513 | 8.8210
7.1360 | 8.4409
7.0240 | .380
.112 | .045.31
.015945 | | 11.710 | 7.4070
6.8870 | 7.0240
7.0240 | 137 | .054527
019505 | | 11.710 | 6.6070
6.8650 | 7.0240
7.0240 | 417
159 | 059368
022637 | | 14.070 | 5.8430
5.4200 | 5.9755
5.9650 | 132
545 | 022174
091366 | | 17.020 | 4.9570
4.0370 | 4.9954
4.8712 | 038
834
.068 | 007687
171251
.013919 | | 17.560
17.560
17.560 | 4.9390
5.0890
4.8750 | 4.8712
4.8712
4.8712 | .218 | .044712 | | 17.560
17.560 | 4.8980
4.8660 | 4.8712
4.8712 | .027
005 | .005502 | | 17.560
17.560 | 4.8470
5.6310 | 4.8712
4.8712 | 024
.760 | 004968
.155978 | | 20.340
35.130 | 4.9530 | 4.2354
2.5027 | .718
064 | .169427
025460 | | 35.130
35.130 | 2.3980
2.4870 | 2.5027
2.5027 | 105
016 | 041847
006281 | | 35.620
42.490 | 2.5540
2.2050 | 2.4753
2.0955 | .079
.110 | .031802
.052275 | | 42.490
42.490 | 2.1560
2.1710 | 2.0955
2.0955 | .061
.076 | .028891
.036049 | | 46.730
46.730 | 1.8330
1.9270 | 1.9143
1.9143 | 081
.013 | 042450 | | 58.550
58.550 | 1.3520 | 1.5306
1.5306 | 179
230 | 116686
150C07 | | 81.360 | 1.1220 | 1.1037 | .018 | .016599
.069150
027798 | | 81.360
99.000
116.800 | 1.0730
.9500
.7052 | 1.1037
.8140
.7574 | 031
.136
052 | .167C64
068920 | | 166.900 | .4639
.5144 | .5077
.5077 | 044 | 086260 | | 199.900 | .4209 | .4250
.4250 | 004 | 009677
.020204 | | 250.400
316.400 | .2918 | .3221 | 030
.087 | 094095
.345557 | | 428.400 | .1849 | .1879 | 003 | 016154 | Some of these values are presented below: | Number of Positive Points | 41 | |---------------------------------|---------| | Number of Negative Points | 53 | | Total Number of Points | 94 | | Average Positive Relative Error | 0.076 | | Average Negative Relative Error | -0.061 | | Average Relative Error | -0.0014 | | Average Absolute Relative Error | 0.067 | There are 12 more values below the curve than above, and approximately two-thirds of the points below the curve fall within 6 percent of the curve and two-thirds of the points above the curve fall within 7.6 percent. Approximately two-thirds of all data points fall within plus or minus 6.7 percent of the curve. This value indicates a better fit or less scatter in the data when compared with the 9.6 percent figure from the positive duration analysis. ### Arrival Time Curves This report considers many hundreds of measurements of arrival time at various radial distances from ground zero recorded on the series of four shots. The values used are primarily those recorded by the various electronic pressure transducers. The first set of values are presented in Table XI. These are scaled distances and arrival time values for the 5-ton shot and they are plotted in Figure 12. A curve has been drawn through the points and shows very little scatter about the curve. The arrival times measured by the pressure transducers show excellent agreement with arrival times obtained from the photo-optical method
used by the Canadians. In Table XII the scaled distances and arrival times for the 20-ton shot are listed. There was tripartite participation on this shot and the United Kingdom and Canada also made blast measurements. The measurements recorded by the U.S. team show excellent agreement with those of the other two countries, therefore only the U.S. values are TABLE XI SCALED ARRIVAL TIME AND DISTANCE VALUES FOR A 5-TON INT DETONATION | λ | t
as | λ | tas | |--|--|--|--| | 1.49
1.72
2.26
3.16
4.75
6.01
7.46 | MSEC/LBS ^{1/3} .14 .18 .27 .54 1.17 1.85 2.75 | FT/LBS ^{1/3} 9.49 20.34 35.62 42.49 81.36 153.70 316.40 | MSEC/LBS ^{1/3} 4.15 13.27 26.09 32.05 66.31 131.10 272.10 | TABLE XII SCALED ARRIVAL TIME AND DISTANCE VALUES FOR A 20-TON INT DETONATION | λ | t
as | 1 | t
as | |--|---|---|--| | FT/LBS ^{1/3} 1.14 1.28 1.57 2.34 3.11 4.20 5.77 | MSEC/LBS ^{1/3} • 09 • 12 • 16 • 31 • 52 • 90 1• 65 | FT/LBS ^{1/3} 8.28 11.71 17.56 35.13 58.55 199.90 | MSEC/LBS ^{1/3} 3.21 5.76 10.45 25.63 46.64 169.10 | presented in Table XII. A comparison of the scaled arrival time versus distance curve for the 5-ton shot presented in Figure 12 and the curve for the 20-ton shot presented in Figure 13 show excellent agreement. The scaled values of distance and arrival time for the 100-ton shot are listed in Table XIII and shown plotted in Figure 14. They show excellent agreement with measurements made by the other two participating countries. The curve drawn through the points in Figure 14 also shows excellent agreement with the curve constructed for the 20-ton values plotted in Figure 13. From the analysis of the curves for the 5-, 20-, and 100-ton scaled arrival time values, cube-root scaling is validated for this parameter. There does not seem to be any trend evident as shown on the positive duration or positive impulse. On the 500-ton TNT shot there were hundreds of measurements made of the arrival time of the shock front at various radial distances from ground zero. The arrival times recorded by BRL along the basic blast line will be used in this report plus some close-in measurements made by the Sandia Corporation (SC) using the slifer cable technique. The scaled arrival times and distances for the 500-ton shot are listed in Table XIV for the BRL measurements, and Table XV contains the close-in slifer-cable data. These data are plotted in Figure 15 with a curve drawn to indicate a best fit as determined by a visual inspection. A composite curve, Figure 16, was constructed from the scaled values presented in Tables XI through XV. The analysis of the scale, data and values from the composite curve at similar scaled distances is presented in Table XVI. The overall agreement of the scaled arrival time data over the range of 5- to 500-tons is excellent. It can be concluded that cube-root scaling has been validated for arrival time over this TABLE XIII SCALED ARRIVAL TIME AND DISTANCE VALUES FOR A 100-TON THT DETONATION | λ | t
as | λ | t
as | |--|---|---|---| | FT/LBS ^{1/3} 2.34 3.40 3.87 4.36 4.66 4.99 5.02 5.57 5.84 6.11 6.84 | MSEC/LBS ^{1/3} .35 .64 .78 1.00 1.12 1.27 1.32 1.55 1.75 1.79 2.34 | FT/LBS ^{1/3} 6.89 7.39 7.76 8.76 9.51 14.07 17.02 46.73 116.80 166.80 250.40 | MSEC/LBS ^{1/3} 2.34 2.58 2.78 3.50 4.04 7.67 10.09 36.54 99.17 144.40 217.50 | TABLE XIV SCALED ARRIVAL TIME AND DISTANCE VALUES (BRL) FOR A 500-TON THT DETONATION | λ | t
as | λ | t
as | |--|---|---|---| | FT/LBS ^{1/3} .49 .79 1.03 1.71 2.44 2.97 3.46 | MSEC/LBS ^{1/3} .03 .05 .09 .19 .34 .50 | FT/LBS ^{1/3} 4.53 4.97 5.55 6.72 7.80 9.35 | MSEC/LBS ^{1/3} 1.10 1.29 1.61 2.23 2.94 4.00 | TABLE XV SCALED ARRIVAL TIME AND DISTANCE VALUES (SC) FOR A 500-TON THI DETONATION | λ | t
as | λ | t
as | |--|--|---|--| | FT/LBS ^{1/3} .208 .265 .313 .355 .393 .428 .467 | MSEC/LBS ^{1/3} .010 .013 .015 .018 .020 .023 .025 | FT/LBS ^{1/3} .521 .546 .578 .633 .681 .738 .840 .927 | MSEC/LBS ^{1/3} .030 .033 .035 .040 .045 .050 .060 | FIG. IG COMPOSITE CURVE OF SCALED DISTANCE VS SCALED ARRIVAL TIME FOR 5,20,100 AND 500 TON TNT DETONATIONS TABLE XVI RELATIVE ERROR DETERMINATIONS FOR ARRIVAL TIME | λ | et as | ct
as | DIFF | R. E. | |-------|--------|----------|-------|---------| | -208 | .0100 | .0101 | •000 | 003262 | | . 265 | .0126 | .0126 | .,000 | 005057 | | .313 | .0151 | .0151 | .000 | 001458 | | .355 | .0176 | .0175 | •000 | .003058 | | . 393 | .0201 | .0201 | • 000 | 002027 | | .428 | .0226 | .0226 | •000 | .001152 | | • 467 | .0251 | .0255 | -000 | 015078 | | .487 | .0285 | .0272 | .001 | .047486 | | .492 | .0276 | .0276 | •000 | 000897 | | .521 | .0301 | .0301 | •000 | .001083 | | .546 | .0326 | .0323 | •000 | .010867 | | .578 | .0352 | .0352 | •000 | .000114 | | .633 | .0402 | .0400 | •000 | .004842 | | -681 | .0452 | .0446 | •001 | .014135 | | .738 | 0502 | .0503 | •000 | 002186 | | . 789 | .0546 | .0551 | •000 | 008859 | | .840 | .0603 | .0607 | • 000 | 007362 | | .927 | .0703 | .0701 | •000 | .002870 | | 1.030 | .0865 | .0821 | • 004 | .053337 | | 1.142 | . 0940 | .0959 | 002 | 020058 | | 1.285 | .1204 | .1149 | •006 | .047868 | | 1.492 | . 1354 | .1467 | 011 | 077154 | | 1.571 | . 1586 | .1601 | 001 | 009183 | | 1.710 | .1910 | .1838 | •007 | .039173 | | 1.718 | . 1806 | .1852 | 005 | 025049 | | 2.260 | . 2708 | .2991 | 028 | 094617 | | 2.337 | .3480 | .3172 | .031 | .097117 | | 2.342 | . 3055 | .3184 | 013 | 040425 | | 2.440 | . 3400 | .3430 | 003 | 008746 | | 2.970 | . 5000 | .4930 | .007 | .014199 | | 3.113 | .5179 | • 5386 | 021 | 038454 | | 3.164 | . 5417 | .5551 | 013 | 024203 | | 3.405 | . 6385 | .6357 | .003 | .004405 | | 3.460 | . 6490 | .6544 | 005 | 008252 | | 3.872 | . 7830 | .8123 | 029 | 036028 | | 4.198 | .9018 | .9462 | 044 | 046904 | | 4.356 | 1.0000 | 1.0110 | 011 | 010841 | | 4.530 | 1.1000 | 1.0844 | -016 | .014386 | | 4.657 | 1.1190 | 1.1454 | 026 | 023015 | TABLE XVI (Contd) RELATIVE ERROR DETERMINATIONS FOR ARRIVAL TIME. | λ | et
as | ct as | DIFF | R. E. | |------------------|--------------------|--------------------|---------------|----------| | 4.746 | 1.1740 | 1.1881 | 014 | 011851 | | 4.970 | 1.2900 | 1.2956 | 006 | 004322 | | 4.990 | 1.2750 | 1.3052 | 030 | 023138 | | 5.024 | 1.3190 | 1.3210 | 002 | 001544 | | 5.550 | 1.6100 | 1.5670 | .043 | .027441 | | 5.574 | 1.5500 | 1.5800 | 030 | 018963 | | 5.769 | 1.6480 | 1.6853 | 037 | 022109 | | 5.841 | 1.7500 | 1.7241 | .026 | .014999 | | 6.012 | 1.8510 | 1.8165 | .035 | .019004 | | 6.109 | 1.7920 | 1.8689 | 077 | 041127 | | 6.720 | 2.2300 | 2.2164 | .014 | .006136 | | 6.843 | 2.3450 | 2.2927 | .052 | .022829 | | 6.893 | 2.3380 | 2.3237 | .014 | .006171 | | 7.394 | 2.5790 | 2.6343 | 055 | 020985 | | 7.459 | 2.7540 | 2.6746 | .079 | .029694 | | 7.761 | 2.7840 | 2.8670 | 083 | 028964 | | 7.800 | 2.9400 | 2.8920 | .048 | .016598 | | 8.282 | 3.2140 | 3.2118 | •002 | .000697 | | 8.762 | 3.5560 | 3.5539 | •002 | .000597 | | 9.350 | 4.0000 | 3.9750 | .025 | .006289 | | 9.493 | 4.1530 | 4-0751 | -078 | .019116 | | 9.513 | 4.0370 | 4.0896 | 053 | 012867 | | 11.710 | 5.7610 | 5.7680 | 007 | 001214 | | 14.070 | 7-6900 | 7.6595 | .031 | . 003982 | | 17.020 | 10.0900 | 10.2180 | 128 | 012527 | | 17.560 | 10.4500 | 10.7040 | 254 | 023729 | | 20.340 | 13.2700 | 13.0720 | -198 | .015147 | | 35.130 | 25.6300 | 25.6196 | .010 | .000406 | | 35.620 | 26.0900 | 26.0704 | .020 | .000752 | | 42.490
46.730 | 32.0500 | 32.0920 | 042 | 001309 | | 58.550 | 36.5400
46.6400 | 35.6224 | .918 | .025759 | | 81.360 | 66.3100 | 45.7820
65.4968 | .858 | .018741 | | 116.800 | 99.1700 | 96.7160 | .813
2.454 | .012416 | | 53.700 | 131.1000 | 129.3300 | 1.770 | .013686 | | 166.800 | 144.4000 | 140.4400 | 3.960 | .028197 | | 199.900 | 169.1000 | 169.9100 | 810 | 004767 | | 250.400 | 217.5000 | 215.3200 | 2.180 | .010124 | | 316.400 | 272.1000 | 271.7760 | .324 | .001192 | | | | | | 1007115 | range or yields. Some of the pertinent values obtained from Table XVI are listed below: | Number of Positive Points | 40 | |---------------------------------|--------| | Number of Negative Points | 38 | | Total Number of Points | 78 | | Average Positive Relative Error | 0.0170 | | Average Negative Relative Error | 0.0195 | | Average Relative Error | 0.0007 | | Average Absolute Relative Error | 0.0182 | These values show excellent correlation in the number of positive and negative values. The average relative errors are very near the same. Approximately two thirds of the points fall within plus or minus 1.8 percent of the composite curve. The curve shown in Figure 16 presents all data listed in Table XVI except the last six values. For λ 's greater than 100 refer to Figure 18. ### Peak Overpressure Curve The peak overpressures measured on the 5-, 20-, and 100-ton TNT shots
have been presented in Reference 1. The measurements made in the high overpressure region on the 500-ton shot were more reliable and showed greater consistency then those obtained on any of the preceding shots. The peak overpressure measurements in the close-in region on the 5-, 20-, and 100-ton shots were determined primarily from arrival time measurements and were not higher than 3,000 psi. On the 500-ton shot the arrival time measurements were started from the detonation point in the charge. The scaled arrival data derived from measurements made by the U.S. on all four shots is presented in Table XVI. Those values plus all Camadian, United Kingdom and U.S. srrival time measurements from other shots were scaled, and an arrival time versus scaled distance curve was calculated, using the equation. $$\lambda - c_1 + c_2 T + c_3 \ln (1 + T) + c_4 \left[\ln(1 + T)\right]^{1/2}$$ (4) where $\lambda = scaled distance (D/w^{1/3})$ $T = t_{as}$ scaled arrival time $C_{1,2,3,4} = constants$ determined from equation The arrival values versus scaled distances from .2 λ to 2 λ established from this equation are listed in Table XVII. Values out to 10λ have been plotted in Figure 17 and a smooth curve drawn through the points. For comparison the data used to establish the curve have also been plotted to show the validity of the curve. This equation was used primarily to establish reliable peak overpressure values in the high overpressure region. From Equation (4) an arrival time versus distance relation was found and by integration the velocity of the shock front was determined. Scaled distance, arrival time and velocity of the shock front are presented in Table XVII. The Mach velocity of the shock front was determined from a computer program but is not listed in Table XVII. From the Mach value it is possible to obtain the peak overpressure from Equation (2) or from tables presented in Reference 7. The tables listing Mach values versus pressure from Reference 7 were stored in the computer, and from this a tabulation of peak overpressure versus λ was obtained. These values are listed in Table XVII for values of λ from 0.20 to 2.0. We believe that from Reference 1, values of peak overpressure at λ 's greater than 1.8 are valid but a modification of the curve in Reference 1 should be made at λ 's less than 1.8. The modified portion of the curve plus the established curve is presented in Figure 18. #### SUMMARY AND CONCLUSIONS The scaled values of peak overpressure, arrival time, positive duration, positive impulse and shock front velocity versus scaled distance (λ) are presented in Table XVIII. The values of the velocity of the shock front as determined in the Appendix are listed in Table Al. TABLE XVII PEAK OVERPRESSURE CALCULATIONS | λ | | $\Delta P_{_{\mathbf{S}}}$ | | t as | U | | |-----|---|----------------------------|---|-------------|----------|---| | 200 | | 69517370 | 4 | 95365817-02 | 21520957 | 2 | | 250 | | 55987611 | 4 | 11989246-01 | 19368175 | 2 | | 300 | | 46237775 | 4 | 14697305-01 | 17644526 | 2 | | 350 | | 38971453 | 4 | 17654940-01 | 16230252 | 2 | | 400 | | 33409437 | 4 | 20856914-01 | 15048188 | 2 | | 450 | | 29043789 | 4 | 24298537-01 | 14045359 | 2 | | 500 | | 25526425 | 4 | 27975316-01 | 13182109 | 2 | | 550 | | 22637763 | 4 | 31883296-01 | 12430590 | 2 | | 600 | | 20219804 | 4 | 36018838-01 | | | | 650 | | | | | 11769658 | 2 | | - | | 18175224 | 4 | 40378668-01 | 11183287 | 2 | | 700 | | 16448920 | 4 | 44959809-01 | 10658955 | 2 | | 750 | | 14966832 | 4 | 49759597-01 | 10186852 | 2 | | 800 | | 13676542 | 4 | 54775631-01 | 97590934 | ī | | 850 | | 12554663 | 4 | 60005755-01 | 93692690 | î | | 900 | | 11571693 | 4 | 65448129-01 | 90123153 | • | | 950 | | 10704254 | 4 | 71101102-01 | 86839577 | • | | | | | | | | Ť | | 100 | 1 | 99350823 | 3 | 76963158-01 | 83804392 | 1 | | 125 | 1 | 71171089 | 3 | 10937417 | 71475546 | 1 | | 150 | 1 | 53343835 | 3 | 14690535 | 62363142 | 1 | | 175 | 1 | 41257387 | 3 | 18956676 | 55247952 | ī | | 200 | 1 | 32591507 | 3 | 23744857 | 49466298 | ī | These scaled values or the blast parameters have all been plotted versus scaled distance and presented in Figure 18. The figure may be used as a quick reference for determining the scaled values of the various parameters versus scaled distance as well as their relation to each other. The accuracy of the curves in relation to the data has been emphasized earlier in this report, but the user is again reminded that the trend noted in the positive duration should be given consideration when predicting the duration to be expected from small yields. The difficulty in recording duration, plus the apparent trend as a function of yield makes the tabulations and associated curve the least accurate of the blast parameters reported here. The impulse values listed in Table XVIII and the curve presented in Figure 18 are believed to be reasonably accurate in the region greater than 3λ because of the large number of data used. The region less than 3λ may be somewhat questionable because of the scarcity of data in the higher pressure region. The arrival time values listed in Table XVIII are taken from two sources. (1) The values established from Equation (4) and plotted to 10λ in Figure 17 show good visual agreement with the data points. The equation did not give valid results at λ 's greater than 6λ . (That is the peak overpressure calculated from the velocity determinations began to fall lower than the established curve and became negative at 50λ .) (2) The values of λ greater than four, the arrival times were calculated from the peak overpressure versus λ determinations as explained in the Appendix. The arrival time values determined by this method show excellent agreement with the curves presented in Figures 16 and 18. For determining arrival times at less than 4x, it is recommended that the curve in Figure 17 be used. For arrival times at greater than 4λ , the curve in Figure 18 is recommended. The values in Table XVIII may be used throughout the complete range; the same information is contained in Table A.1 of the Appendix. The arrival time curve in Figure 18 is the same as the composite curve established in Figure 16. TABLE XVIII BLAST PARAMETERS VERSUS SCALED DISTANCE | λ | | ΔPs | | ^t as | | U | | t _{+s} | | | Is | | |-----------------------|---|--------------|---|------------------|------|----------------|---|-----------------|------------------|------------|--------|-------| | FT/LBS ^{1/3} | | PSI | | MSEC/LES | 31/3 | FT/MSE | C | MSEC/LB | s ^{1/3} | PSI-MS | SEC/LE | 351/3 | | 2000 | | 6952 | 4 | 9537- | | 21518 | 2 | | | | | | | 2500 | | 5599 | 4 | 1199- | | 19366 | 2 | | | | | | | 3000 | | 4624 | 4 | 1470- | | 17645 | 2 | | | | | | | 3500 | | 3897 | 4 | 1765- | | 16230 | 2 | | | | | | | 4000 | | 3341 | 4 | 2086- | | 15048 | 2 | 107 | | | | | | 4500
5000 | | 2904
2553 | 4 | 2430-1
2797-1 | | 14046
13182 | 2 | 197
189 | | 422 | • | | | | | | 4 | | | 12431 | 2 | | | | 2 | | | 5500
6000 | | 2264
2022 | 4 | 3188-0
3602-0 | | 11770 | 2 | 183
178 | | 363
321 | 2
2 | | | 6500 | | 1818 | 4 | 4038- | | 11183 | 2 | 174 | | 290 | 2 | | | 7000 | | 1645 | 4 | 4496- | | 10659 | 2 | 171 | | 267 | 2 | | | 7500 | | 1497 | 4 | 4976- | | 10187 | 2 | 170 | | 248 | 2 | | | 8000 | | 1368 | 4 | 5477- | | 97591 | ì | 170 | | 233 | 2 | | | 8500 | | 1255 | 4 | 6000- | | 93692 | ī | 171 | | 223 | 2 | | | 9000 | | 1157 | 4 | 6544- | | 90123 | ì | 172 | | 214 | 2 | | | 9500 | | 1070 | 4 | 7110- | | 86840 | ì | 174 | | 207 | 2 | | | 1000 1 | | 9935 | 3 | 7696- | | 83805 | ī | 178 | | 200 | 2 | | | 1100 1 | | 8602 | 3 | 8930- | | 78304 | ì | 190 | | 193 | 2 | | | 1200 1 | | 7544 | 3 | 1025 | | 73561 | ì | 208 | | 189 | 2 | | | 1300 1 | | 6678 | 3 | 1165 | | 69395 | 1 | 230 | | 185 | 2 | | | 1400 1 | | 5923 | 3 | 1313 | | 65621 | 1 | 256 | | 184 | 2 | | | 1500 1 | | 5334 | 3 | 1469 | | 62363 | 1 | 288 | | 186 | 2 | | | 1600 1 | L | 4782 | 3 | 1633 | | 59277 | 1 | 326 | | 189 | 2 | | | 1700 1 | 1 | 4322 | 3 | 1806 | | 56511 | 1 | 375 | | 192 | 2 | | | 1800 1 | Ļ | 3419 | 3 | 1987 | | 53941 | 1 | 430 | | 200 | 2 | | | 1900 1 | | 3540 | 3 | 2178 | | 51442 | 1 | 510 | | 210 | 2 | | | 2000 1 | | 3207 | 3 | 2377 | | 49098 | 1 | 605 | | 224 | 2 | | | 2200 1 | | 2630 | 3 | 2804 | | 44791 | 1 | 865 | | 241 | 2 | | | 2400 1 | | 2180 | 3 | 3270 | | 41096 | 1 | 118 | 1 | 265 | 2 | | | 2600 1 | | 1834 | 3 | 3777 | | 37982 | 1 | 143 | 1 | 263 | 2 | | | 2800 1 | | 1558 | 3 | 4323 | | 35307 | 1 | 159 | 1 | 251 | 2 | | | 3000 l | | 1337 | 3 | 4909 | | 32993 | 1 | 166 | 1 | 239 | 2 | | | 3250 1 | | 1117 | 3 | 5698 | | 30509 | 1 | 170 | 1 | 224 | 2 | | | 3500 1 | | 9438 | 2 | 6548 | | 28407 | 1 | 170 | 1 | 211 | 2 | | | 3750 1 | | 8064 | 2 | 7457 | | 26614 | 1 | 167 | 1 | 198 | 2 | | | 4000 1 | | 6958 | 2 | 8426 | • | 25073 | j | 161 | ļ | 185 | 2 | | | 4500 1
5000 1 | | 5316 | 2 | 1053 | 1 | 22608 | 1 | 158 | 1 | 166 | 2 | | | | | 4184 | 2 | 1284 | 1 | 20700 | 1 | 157 | 1 | 151 | 2 | | | 5500 1
6000 1 | | 3376
2782 | 2 | 1535
1803 | 1 | 19236
18074 | 1 | 161
170 | 1 | 138
128 | 2 | | | 6500 1 | | 2334 | 2 | 2087 | ì | 17154 | _ | 183 | | 119 | 2 | | | 7000 1 | | 1989 | 2 | 2385 | 1 | 16409 | 1 | 201 | 1 | 111 | 2 | | | | • | - / - 7 | ~ | | • | 10707 | • | E 0.1 | * | * * * | 4 | | TABLE XVIII (Contd) BLAST PARAMETERS VERSUS SCALED DISTANCE | λ | | ۸Ps | | tas | U | | t
+s | Is | |--------------|--------|----------------------|---|---------------------------|---------|--------|------------------------------|-----------------------------| | FT/LBS | ./3 | PSI | | MSEC/LBS ^{1/3} | FT/MSEC | | MSEC/LBS ^{1/3} | PSI-MSEC/LBS ^{1/3} | | 7500 | ı | 1718 | 2 | 2696 1 | | ı | 216 1 | 104 2 | | 8000 | 1 | 1501 | 2 | 3018 1 | | 1 | 229 1 | 985 1 | | 8500 | 1 | 1323 | 2 | 3349 1 | | 1 | 239 1
| 935 1 | | 9000 | l | 1182 | 2 | 3690 1 | | 1 | 248 1 | 890 1 | | 9500
1000 | 1
2 | 105 9
9615 | 2 | 4037 1
4393 1 | - | 1 | 256 1
262 1 | 845 1 | | 1100 | 2 | 8029 | 1 | 4 3 93 1
5121 1 | | 1 | 262 l
273 l | 810 l
745 l | | 1200 | 2 | 6825 | 1 | 5868 1 | | ì | 283 1 | 745 1
685 1 | | 1300 | 2 | 5920 | i | 6632 1 | | ì | 293 1 | 645 1 | | 1400 | 2 | 5186 | ì | 7408 1 | | ì | 301 1 | 600 1 | | 1500 | 2 | 4665 | ī | 8198 1 | | ī | 309 1 | 565 1 | | 1600 | 2 | 4177 | ì | 8995 1 | | ī | 318 1 | 535 1 | | 1700 | 2 | 3797 | 1 | 9801 1 | | ī | 323 1 | 500 1 | | 1300 | 2 | 3488 | l | 1061 2 | | ī | 331 1 | 477 1 | | 1900 | 2 | 3208 | ı | 1143 2 | | 1 | 337 1 | 452 1 | | 2000 | 2 | 2984 | 1 | 1226 2 | | 1 | 342 1 | 430 1 | | 2200 | 2 | 2596 | 1 | 1392 2 | | 1 | 352 1 | 392 1 | | 2400 | 2 | 2299 | 1 | 1560 2 | 11885 | 1 | 364 1 | 362 1 | | 2600 | 2 | 2061 | 1 | 1728 2 | | 1 | 372 1 | 334 1 | | 2600 | 2 | 1867 | 1 | 1898 2 | | 1 | 381 1 | 312 1 | | 3000 | 2 | 1706 | 1 | 2069 2 | | 1 | 390 1 | 243 1 | | 3250 | 2 | 1537 | 1 | 2283 2
2498 2 | | 1 | 399 1 | 271 1 | | 3500 | 2 | 1397 | 1 | 2498 2 | | 1 | 408 1 | 251 1 | | 3750 | 2 | 1279 | 1 | 2713 2 | | 1 | 418 1 | 237 1 | | 4000
4500 | 2 | 1178
1015 | ļ | 2930 2 | | 1 | 424 1 | 221 1 | | 5000 | 2 | 8876 | 1 | 3364 2 | | 1 | 440 1 | 198 1 | | 5500 | 2 | 7857 | | 3800 2
4237 2 | | 1
1 | 455 l
466 l | 179 1
163 1 | | 6000 | 2 | 7023 | | 4676 2 | | ı
l | 466 <u>1</u>
478 <u>1</u> | 163 1
149 1 | | 6500 | 2 | 6328 | | 5115 2 | | 1 | 487 1 | 138 1 | | 7000 | 2 | 5742 | | 5556 2 | | ì | 498 1 | 128 1 | | 7500 | 2 | 5222 | | 5997 2 | | ì | 508 1 | 120 1 | | 8000 | 2 | 4769 | | 6438 2 | | ī | 518 1 | 112 1 | | 9000 | 2 | 4041 | | 7323 2 | | ī | 533 1 | 945 | | 1000 | 3 | 3484 | | 8209 2 | | 1 | 545 1 | 895 | | 1100 | 3 | 3047 | | 9096 2 | | l | 560 1 | 805 | | 1200 | 3 | 2692 | | 9096 2
9985 2 | 11250 | 1 | 575 1 | 735 | | 1300 | 3 | 2405 | | 1087 3 | 11241 | 1 | 585 1 | 675 | | 1400 | 3 | 2162 | | 1176 3 | 11233 | 1 | 595 1 | 625 | | 1500 | 3 | 1970 | | 1265 3 | | l | 605 1 | 585 | | 1600 | 3 | 1793 | | 1355 3 | | 1 | 615 1 | 545 | | 1700 | 3 | 1647 | | 1444 3 | | 1 | 625 1 | 507 | | 1800 | 3 | 1523 | | 1533 3 | 11213 | l | 633 1 | 480 | TABLE XVIII (Contd) BLAST PARAMETERS VERSUS SCALED DISTANCE | λ | | ΔPs | t
as | | U | | t+s | | Is | | |--------|-----|---------|----------|---------------|---------|---|---------|------|----------|----------------------| | FT/LBS | 1/3 | PSI | MSEC/LBS | 1/3 | FT/MSEC | | MSEC/LB | 31/3 | PSI-MSEC | C/LBS ^{1/3} | | 1900 | 3 | 1409 | 1622 | 3 | 11209 | 1 | 641 | 1 | 451 | | | 2000 | 3 | 1314 | 1711 | 3 | 11206 | 1 | 648 | 1 | 425 | | | 2200 | 3 | 1148 | 1890 | 3 | 11201 | 1 | 650 | 1 | 383 | | | 2400 | 3 | 1016 | 2068 | 3 | 11196 | 1 | 673 | 1 | 351 | | | 2600 | 3 | 9079-01 | 2247 | 3 | 11193 | 1 | 685 | 1 | 321 | | | 2800 | 3 | 8188-01 | 2426 | 3 | 11190 | 1 | 697 | 1 | 298 | | | 3000 | 3 | 7430-01 | 2604 | 3 | 11188 | 1 | 708 | ì | 275 | | | 3250 | 3 | 6640-01 | 2828 | 3 | 11185 | 1 | 712 | 1 | 252 | | | 3500 | 3 | 5980-01 | 3051 | 3 | 11183 | 1 | 735 | 1 | 233 | | | 3750 | 3 | 5430-01 | 3275 | 3
3 | 11181 | ī | 742 | Ī | 217 | | | 4000 | 3 | 4960-01 | 3499 | 3 | 11180 | ī | 755 | ĩ | 201 | | | 4500 | 3 | 4200-01 | 3946 | 3 | 11177 | 1 | 772 | ì | 178 | | | 5000 | 3 | 3620-01 | 4393 | 3 | 11176 | 1 | 788 | ī | | | | 5500 | 3 | 3170-01 | 4841 | 3 | 11174 | ï | 803 | ì | | | | 6000 | 3 | 2800-01 | 5288 | <u>3</u>
3 | 11173 | ï | 819 | ī | | | | 6500 | 3 | 2500-01 | 5736 | 3 | 11172 | ì | | _ | | | | 7000 | 3 | 2260-01 | 6183 | 3 | 11171 | ī | | | | | | 7500 | 3 | 2050-01 | 6631 | 3 | 11171 | 1 | | | | | | 8000 | 3 | 1870-01 | 7079 | 3 | 11170 | ī | | | | | | 9000 | 3 | 1580-01 | 7974 | 3 | 11169 | ĩ | | | | | | 1000 | 4 | 1370-01 | 8869 | 3 | 11168 | ī | | | | | The peak overpressure values listed in Table XVIII contain the same values established in Reference 1 for λ 's greater than 1.8 λ . At less than 1.8 λ , the peak overpressures were determined from the arrival time measurements. These values are plotted in Figure 18 and are believed to be quite accurate. The peak overpressures listed in Table XVIII were used in the Appendix for calculating the arrival time. The fifth parameter of general interest is the velocity of the shock front. Values of shock velocity are listed in Table XVIII as a function of λ and were determined in the same way as arrival time. The values from Table XVIII are plotted in Figure 18 and are consistent with both the peak overpressure and arrival time values. After a thorough analysis of the available data it is quite apparent that information about the duration, impulse and wave shape is lacking for the high overpressure region. This of course implies the need for more measurements of pressure time with improved instrumentation rather than arrival time measurements. There is also a need for a gage more sensitive to a negative pressure than a positive pressure for determining both the positive and negative durations in the high overpressure region. #### ACKNOWLEDGEMENT The author wishes to acknowledge Wayne Place for his work in the data analysis phase of this report and Buckner F. Pannill for the programming and computer runs. C. N. KINGERY #### REFERENCES - 1. Kingery, C. N. and Pannill, B. F. Peak Overpressure Versus Scaled Distance for TNT Surface Bursts (Hemispherical Charges). Ballistic Research Laboratories Memorandum Report No. 1518, April 1964. - 2. Kingery, C. N. and others. Preliminary Report-Operation SNOW BALL. Volume 1 and 2, DASA No. 1550-1 and 1550-2, October 1964. (CONFIDENTIAL) - 3. Symposium Proceedings: Operation SNOW BALL. Volume 1 and 2, DASA No. 1642-1 (UNCLASSIFIED), DASA No. 1642-2 (SECRET), August 1965. - 4. Groves, T. K. Surface Burst 100-ton TNT Hemispherical Free Field Air Blast Overpressure. Suffield Technical Paper No. 269. Ralston, Canada, October 1962. - 5. Chabia, A. J.; Bass, R. C. and Hawk, H. L. Measurements of Wave Fronts in Earth, Air, and Explosive Produced by a 500-Ton Hemisphere of TNT Detonated on the Surface of the Earth. Sandia Corporation Report SC-RR-64-442, November 1965. (OFFICAL USE ONLY) - 6. Preliminary Report on the Canadian Projects in the (1964) 500-Ton TNT Suffield Explosion. Suffield Special Publication 45, Fall 1964. - 7. Shear, R. E. and Day, B. D. Tables of Thermodynamic and Shock Front Parameters for Air. Ballistic Research Laboratories Memorandum Report No. 1206, May 1959. # PREVIOUS PAGE WAS BLANK, THEREFOR WAS NOT FILMED. #### APPENDIX A INTERNAL CONSISTENCY OF THE ARRIVAL TIME AND PRAK OVERPRESSURE The shock front velocity of a blast wave is related to the peak overpressure by the Rankine-Hugoniot relationship. Since the velocity of the shock front is equal to the inverse of the derivation of the arrival time curve $$U = d\lambda/dt_{a} = (\frac{1}{d\lambda}), \qquad (A1)$$ we can derive the overpressure curve theoretically from the arrival time curve. Employing this procedure it is also possible to test the internal consistency of the experimentally derived curves by comparing them with those derived theoretically. It has been found that very small variations in arrival time measurements can have extremely adverse effects on the apparent velocity of the shock front and in turn this affects the derived peak overpressure. Therefore, to test the internal consistency of the curve, it was decided to derive a theoretical arrival time curve based on the experimental peak overpressure curve. In the analysis of the arrival time data it was found that from Equation (4) a good starting point was at distance of λ 0 equal to 0.20 ft/1b^{1/3}, where the scaled arrival time t as is 0.00953658 ms/lb^{1/3}. The arrival time at any point λ , beyond λ 0 = 0.20 is given by $$t_{as} = 0.00953658 + \int_{\lambda_0}^{\lambda} = 0.20 \, dt_{as}$$ $$= 0.00953658 + \int_{\lambda_0}^{\lambda} = 0.20 \, (\frac{dt_{as}}{d\lambda}) \, d\lambda \qquad (A2)$$ $$= 0.00953658 + \int_{\lambda_0}^{\lambda} = 0.20 \, (\frac{1}{U}) \, d\lambda ,$$ where U equals shock front velocity in ft/ms, $t_{\rm as}$ equals scaled arrival time in ms/lb^{1/3}, and λ equals scaled distance from ground zero in ft/lb^{1/3}. The integration was achieved by using the peak overpressure versus scaled distance listed in Table XVIII. Values of scaled horizontal distances were selected as listed with the corresponding peak overpressure. The appropriate value of shock front velocity in Mach units was then selected from the pressure versus Mach values presented in Reference 7. Equation A2 was programmed for the computer and the calculated arrival times are listed in Table A-1, with the peak overpressure, Mach number, velocity, and arrival time. The curve presenting scaled arrival time versus distance in Figure 18 was obtained from measured values as listed in Table XVI. The values in Table XVI and Table A-1 are different by less than one percent over most of the range, but in trying to use the measured values in the various curve fitting techniques, a lower peak overpressure curve was calculated at the greater distances. In fact the peak overpressure curve calculated showed negative values at λ greater than 100. Therefore, the values listed in Table XVIII and A-1 are recommended for use because they are consistent with a well established peak overpressure curve. TABLE A-I ARRIVAL TIME CALCULATIONS | λ | | ΔPs | | М | | Ŭ | | t
as | |--------------|---|----------------------|--------|----------------|---|-------|---|---------| | 2000 | | 6952 | 4 | 19275 | 2 | 21518 | 2 | 9537-02 | | 2500 | | 5599 | 4 | 17347 | 2 | 19366 | | 1199-01 | | 3000 | | 4624 | 4 | 15805 | 2 | 17645 | | 1470-01 | | 3500 | | 3 8 97 | 4 | 14538 | 2 | 16230 | 2 | 1765-01 | | 4000 | | 3341 | - 4 | 13479 | 2 | 15048 | | 2086-01 | | 4500 | | 2904 | 4 | 12581 | 2 | 14046
 2 | 2430-01 | | 5000 | | 2 55 3 | 4 | 11808 | 2 | 13182 | 2 | 2797-01 | | 5500 | | 2264 | 4 | 11135 | 2 | 12431 | 2 | 3188-01 | | 6000 | | 2022 | 4 | 10543 | 2 | 11770 | 2 | 3602-01 | | 6500 | | 1818 | 4 | 10017 | 2 | 11183 | 2 | 4038-01 | | 7000 | | 1645 | 4 | 95477 | 1 | 10659 | 2 | 4496-01 | | 7500 | | 1497 | 4 | 91248 | l | 10187 | 2 | 4976-01 | | 8000 | | 1368 | 4 | 87416 | 1 | 97591 | ī | 5477-01 | | 8500 | | 1255 | 4 | 83923 | 1 | 93692 | ĩ | 6000-01 | | 9000 | | 1157 | 4 | 80726 | 1 | 90123 | 1 | 6544-01 | | 9500
1000 | | 1070 | 4 | 77785 | 1 | 86840 | 1 | 7110-01 | | 1100 | 1 | 9935 | 3 | 75067 | 1 | 83805 | 1 | 7696-01 | | 1200 | 1 | 8602 | 3 | 70140 | 1 | 78304 | 1 | 8930-01 | | 1300 | 1 | 7544 | 3 | 65892 | 1 | 73561 | 1 | 1025 | | 1400 | 1 | 6678 | 3 | 62159 | 1 | 69395 | 1 | 1165 | | 1500 | 1 | 5923 | 3 | 58779 | 1 | 65621 | 1 | 1313 | | 1600 | 1 | 5334 | 3 | 55861 | 1 | 62363 | 1 | 1469 | | 1700 | i | 4782 | 3 | 53097 | 1 | 59277 | 1 | 1633 | | 1800 | i | 4322 | 3 | 50619 | 1 | 56511 | 1 | 1806 | | 1900 | i | 3919 | 3 | 48317 | 1 | 53941 | 1 | 1987 | | 2000 | i | 3540 | 3 | 46079 | 1 | 51442 | 1 | 2178 | | 2200 | i | 3207 | 3 | 43979 | 1 | 49098 | 1 | 2377 | | 2400 | i | 2630
2180 | 3 | 40121 | 1 | 44791 | 1 | 2804 | | 2600 | i | 1834 | 3
3 | 36811 | ı | 41096 | 1 | 3270 | | 2800 | i | 1558 | | 34022 | 1 | 37982 | 1 | 3777 | | 3000 | i | 1337 | 3
3 | 31626 | 1 | 35307 | 1 | 4323 | | 3250 | ī | 1117 | 3 | 29553 | 1 | 32993 | 1 | 4909 | | 3500 | ī | 9438 | 2 | 27328 | 1 | 30509 | 1 | 5698 | | 3750 | i | 8064 | 2 | 25445 | 1 | 28407 | 1 | 6548 | | 4000 | ī | 6958 | 2 | 23839 | 1 | 26614 | 1 | 7457 | | 4500 | i | 5316 | 2 | 22459
20251 | 1 | 25073 | 1 | 8426 | | 5000 | ī | 4184 | 2 | 18542 | 1 | 22608 | 1 | 1053 1 | | 5500 | ī | 3376 | 2 | 17230 | 1 | 20700 | 1 | 1284 1 | | 6000 | ī | 2782 | 2 | 16190 | 1 | 19236 | 1 | 1535 1 | | 6500 | ī | 2334 | 2 | 15365 | | 18074 | 1 | 1803 1 | | 7000 | ī | 1989 | 2 | 14698 | 1 | 17154 | 1 | 2087 1 | | | - | | - | 14070 | L | 16409 | 1 | 2385 1 | TABLE A-I (Contd) # ARRIVAL TIME CALCULATIONS | λ | | ΔPs | : | М | | Ŭ | | tas | | |--|---|--|---------------------------------|--|----------------------------|--|-----------------------|--|---| | 7500
8000
8500
9000
9500
1000 | 1 1 1 2 2 | 1718
1501
1323
1182
1059
9615
5029 | 2
2
2
2
2
1
1 | 14146
13695
13311
12993
12718
12494 | 1
1
1
1
1 | 15792
15290
14861
14506
14199
13949 | 1
1
1
1
1 | 2696
3018
3349
3690
4037
4393
5121 | 1 1 1 1 1 1 1 | | 1200
1300
1400
1500
1600
1700
1800 | 2 | 6825
5920
5186
4665
4177
3797
3488
3208 | 1
1
1
1
1
1
1 | 11824
11599
11413
11276
11150
11052
10970 | 1 1 1 1 1 1 1 1 1 1 | 13201
12950
12742
12589
12448
12338
12247 | 1 1 1 1 1 1 1 1 | 5868
6632
7408
8198
8995
9801
1061
1143 | 1
1
1
1
1
2 | | 2000
2200
2400
2600
2800
3000
3250
3500 | 2 2 2 2 2 2 2 | 2984
2596
2299
2061
1867
1706
1537 | 1 1 1 1 1 1 1 1 | 10832
10726
10646
10581
10529
10485
10439 | 1 1 1 1 1 1 1 1 1 1 1 | 12093
11975
11885
11813
11755
11706
11654
11610 | 1 1 1 1 1 1 1 | 1226
1392
1560
1728
1898
2069
2283 | 2 | | 3750
4000
4500
5000
5500
6000
6500
7000 | 2 2 2 2 2 2 2 2 2 2 | 1279
1178
1015
8876
7857
7023
6328
5742 | 1 1 1 | 10366
10337
10290
10254
10224
10201
10181 | 1 1 1 1 1 1 1 | 11572
11540
11488
11447
11415
11388
11366 | 1 1 1 1 1 1 1 1 1 | 2498
2713
2930
3364
3800
4237
4676
5115 | 2 2 2 2 2 2 2 2 2 | | 7500
8000
9000
1000
1100
1200
1300 | 2 2 3 3 3 3 | 5742
5222
4769
4041
3484
3047
2692
2405 | | 10164
10149
10136
10115
10100
10087
10077
10069 | 1
1
1
1
1
1 | 11347
11331
11316
11293
11275
11261
11250
11241 | 1 1 1 1 1 1 1 1 1 | 5556
5997
6438
7323
8209
9096
9985 | 2 2 2 2 2 2 2 | | 1400
1500
1600
1700 | 3
3
3 | 2162
1970
1793
1647 | | 10062
10056
10051
10047 | 1
1
1 | 11233
11227
11221
11217 | 1
1
1
1 | 1087
1176
1265
1355
1444 | 3
3
3
3 | TABLE A I (Contd) ARRIVAL TIME CALCULATIONS | λ | | ΔPs | М | | U | | ^{t,} as | | |------|---|---------|-------|---|-------|---|------------------|---| | 1800 | 3 | 1523 | 10044 | 1 | 11213 | 1 | 1533 | 3 | | 1900 | 3 | 1409 | 10040 | 1 | 11209 | i | 1622 | 3 | | 2000 | 3 | 1314 | 10038 | 1 | 11206 | ì | 1711 | 3 | | 2200 | 3 | 1148 | 10033 | 1 | 11201 | i | 1890 | 3 | | 2400 | 3 | 1016 | 10029 | 1 | 11196 | ī | 2068 | 3 | | 2600 | 3 | 9079-01 | 10026 | 1 | 11193 | i | 2247 | 3 | | 2800 | 3 | 8188-01 | 10023 | ī | 11190 | i | 2426 | 3 | | 3000 | 3 | 7430-01 | 10021 | ī | 11188 | ì | 2604 | | | 3250 | 3 | 6640-01 | 10019 | i | 11185 | i | 2828 | 3 | | 3500 | 3 | 5980-01 | 10017 | i | 11183 | i | 3051 | 3 | | 3750 | 3 | 5430-01 | 10016 | ī | 11181 | 1 | - | 3 | | 4000 | 3 | 4960-01 | 10014 | i | 11180 | 1 | 3275 | 3 | | 4500 | 3 | 4200-01 | 10012 | i | 11177 | 1 | 3499 | 3 | | 5000 | 3 | 3620-01 | 10010 | ī | 11176 | 1 | 3946 | 3 | | 5500 | 3 | 3170-01 | 10009 | i | 11176 | 1 | 4393 | 3 | | 6000 | 3 | 2800-01 | 10008 | i | 11173 | 1 | 4841 | 3 | | 6500 | 3 | 2500-01 | 10007 | 1 | | i | 5288 | 3 | | 7000 | 3 | 2260-01 | 10006 | • | 11172 | ŗ | 5736 | 3 | | 7500 | 3 | 2050-01 | 10006 | 1 | 11171 | ī | 6183 | 3 | | 8000 | 3 | 1870-01 | 10005 | 1 | 11171 | Ţ | 6631 | 3 | | 9000 | 3 | 1580-01 | | 1 | 11170 | 1 | 7079 | 3 | | 1000 | 4 | 1370-01 | 10005 | 1 | 11169 | 1 | 7974 | 3 | | | 7 | 1910-01 | 10004 | 1 | 11168 | 1 | 9889 | 3 | | Security Classification | | | | | | | |---|---|----------------------------------|--|--|--|--| | DOCUMENT CO (Security classification of title, body of abstract and index) | NTRUL DATA - R& | | the ownered energy to change (and) | | | | | 1 ORIGINATING ACTIVITY (Corporate author) | ing antibiation man of the | | T SECURITY CLASSIFICATION | | | | | U.C. Army Ballistic Research Laborator. | es | 1 | assified | | | | | Aberdeen Proving Ground, Maryland | | 2 b GROUE | | | | | | Averaged Froving Ground, Mary Land | | ZD GROUP | | | | | | 3 REPORT TITLE | | | | | | | | AIR BLAST PARAMETERS VERSUS DISTANCE FO | OR HEMISPHERICA | i Int si | URFACE BURSTS | | | | | 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) | | | | | | | | 5 AUTHOR(S) (Lest name, first name, initial) | | | | | | | | Kingery, Charles N. | | | | | | | | 6. REPORT DATE | 74. TOTAL NO. OF P | AGEF | 76. NO. OF REFS | | | | | September 1966 | 81 | | 7 | | | | | BA. CONTRACT OR GRANT NO. | 94 DRIGINATOR'S R | EPORT NUM | BER(S) | | | | | b. PROJECT NO. | Report No. | 1344 | | | | | | - DASA Subtask No. 01.049 | Sb. OTHER REPORT NO(5) (Any other numbers that may be assigned this report) | | | | | | | 10. AVAILABILITY/LIMITATION NOTICES This docum | ent is subject | to spec | al export controls | | | | | and each transmittal to foreign government with prior approval of Commanding Offi Laboratories, Aberdeen Proving Ground, | ments or foreig
cer, U.S. Army | n nation | nals may be made only | | | | | 11. SUPPLEMENTARY NOTES | 12. SPONSORING MIL | TARY ACTI | VITY | | | | | | U.S. Army Ma | | Command | | | | | | Washington, | D.C. | | | | | | 13. ABSTRACT | <u> </u> | | | | | | | This report contains a presentation of arrival time, positive duration and im the parameters are derived from empiri sponsored under The Technical Cooperat Kingdom and the United States. The me 500-ton TNT surface bursts. The charg in the shape of a hemisphere. | pulse versus so
cal measurement
ion Program (Ti
asurements were | caled dissuade (CP) i.e. made on | stances. The values on a series of tests ., Canada, the United n 5-, 20-, 100- and | | | | | • | ł | 1 | | | | | | | DD 15884 1473 Unclassified | 14. KEY WORDS | LI | NK A | LINK B | LINK (| |--|--------------|-------|---------|---------| | | ROLF | 1 W F | HOLI WI | HOLE #1 | | Shock Waves Arrival Times Positive Duration Positive Impulse Peak Overpressure | | | | | | | INSTRUCTIONS | | | | - ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report. - 2s. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations. - 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200: 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show
that optional markings have been used for Group 3 and Group 4 as authorized. - 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesia immediately following the title. - 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summery, annual, or final. Give the inclusive dates when a specific reporting period is covered. - 5. AUTHOR(8): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement. - REPORT DATE: Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication. - 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. - 76. NUMBER OF REFERENCES: Enter the total number of references cited in the report. - 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. - 8b, 8c, 6s 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, supproject number, system numbers, task number, etc. - 9e. ORIGINATOR'S REPORT NUMBER(5): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report. - 9b. OTHER REPORT NUMBER(8): If the report has been assigned any other report numbers (either by the originator or by the aponsor), also enter this number(s). - AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as: - "Qualified requesters may obtain copies of this report from DDC." - (2) "Foreign announcement and dissemination of this report by DDC is not authorized." - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through - (5) "All distribution of this report is controlled. Qualified DDC users shall request through If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, Indicate this fact and enter the price, if known - 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes. - 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory aponacring (paying for) the research and development. Include address. - 13. ABSTRACT: Enter an abstract giving a brief and factual aummary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional apace is required, a continuation sheet shall be attached. - It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall and with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words. aver, the suggester tength is from 150 to 255 words. 14. KEY WORDS: Key words are technically meuningful terms or short phranes that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Idenfiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional. Unclassified